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DISCRETE MODELS OF THE SELF-DUAL AND ANTI-SELF-DUAL EQUATIONS

In the case of a gauge-invariant discrete model of Yang-Mills theory difference self-dual and anti-self-dual
equations are constructed.

1. Introduction.

In 4-dimensional non-abelian gauge theory the self-dual and anti-self-dual connections
are the most important extrema of the Yang-Mills action. Consider a trivial bundle P =
R* x G, where G is some Lie group. We define a connection as some g-valued 1-form A,
where g is the Lie algebra of the group G [5]. Then the connection 1-form A can be written
as follows

A=) Al(z)Aodat, (1)

where ), is the basis of the Lie algebra g. The curvature 2-form F' of the connection A is
given by
F=dA+ ANA (2)

We specialize straightaway to the choice G = SU(2), then g = su(2). We define the covariant
exterior differentiation operator d4 by

daQl=dQ+AANQ+ (=1)""QA A, (3)

where  is an arbitrary su(2)-valued r-form. Compare (2) and (3) we obtain the Bianchi
identity
daF = 0. (4)

The Yang-Mills action S can be conveniently expressed (see |5, p. 256|) in terms of the
2-forms F and *F as

S = —ft'r(F/\ «F'),
2]
where x is the adjoint operator (Hodge star operator). The Euler-Lagrange equations for the

extrema of S are

Equations (4), (5) are called the Yang-Mills equations [4]. These equations are non-linear
coupled partial differential equations containing quadratic and cubic terms in A.

In more traditional form the Yang-Mills equations are expressed in terms of components
of the connection A and the curvature F (see [2,3]). Let

Ay =) A%(z)Aa

be the component of the connection 1-form (1). Then the components of the curvature form

are given by

_ 04, i 04,
dz® oz

F,, + [Ay, A)),
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Discrete models of the self-dual and anti-self-DUAL equations

where [- -] be the commutator of the algebra Lie su(2). In local coordinates the covariant
derivative V; can be written

OF,

Vidlpi= ﬁ % [Asidg]:
Then we can write Equations (4), (5) as
ViFy + VuFy; + Vo, F;, =0, (6)
OF -
o+ An Pl =0 (7)
#:

Note that Equations (7) are obtained in the case of Euclidean space R*.
The self-dual and anti-self-dual connections are solutions of the following nonlinear first
order differential equations
F=il, F=—-xF. (8)

Equations (8) are called self-dual and anti-self-dual respectively. It is obviously that if one
can find A such that F' = £+ F, then the Yang-Mills equations (5) are automatically satisfied.

2. The discrete model in R*.

In [6] the gauge invariant discrete model of the Yang-Mills equations is constructed in
the case of the n-dimensional Euclidean space R". Following [6], we consider a combinatorial
model of R? as a certain 4-dimensional complex C'(4). Let K(4) be a dual complex of C(4).
The complex K(4) is a 4-dimensional complex of cochains with su(2)-valued coefficients. We
define the discrete analogs of the connection 1-form A and the curvature 2-form F' as follows

cochains ) \
B D I TR 3 3 W) 2 ©
koi=1 koi<j j=2
where A, Fi/ € su(2), ek, 5 are 1-, 2-dimensional basis elements of K(4) and k =
(ky, ko, k3, ky), ki € Z. We use the geometrical construction proposed by A. A. Dezin in [1]
to define discrete analogs of the differential, the exterior multiplication and the Hodge star
operator.

Let us introduce for convenient the shifts operator 7; and o; as
Tik = (kl, ...Tk;{., ...k4), O'ik = (k‘], ...O'ki, ...k4),

where 7k; = k; + 1 and ok; = k; — 1, k; € Z. Similarly, we denote by 7;; (0;;) the operator
shifting to the right (to the left) two differ components of k = (ky, k2, k3, k4). For example,
’Tlgk = (Tkl, ’Tkg, kg, k‘4), 0'14)'6' = (O'kl, k-z, k3, O‘k4).

If we use (2) and take the definitions of d and A in discrete case [1,6], then we obtain

B9 = Ap Al - Ay Al + A, — A4, (10)

where &ki.ﬁlf; = Aiﬁk - Afc, 1,7 = 1,2,3,4. The metric adjoint operation * acts on the
2-dimensional basis elements of K(4) as follows

k __ _Tiak koo T13k TR O
*¥E19 = €34 » *e13 = —Eaq *€14 = €93
k _ _7a3k K oo To4k k _ _Tak
*E93 = €17 *Egy = —E13 *34 = €12 -
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Then we obtain o
23 _k
*F =3, ( 34&512 Fe :4k 13 0 23k514+

(11)
+F 14-‘6‘ 23 Fo'lak “24 + F 12k 34)

Comparing the latter and (9) the discrete analog of the self-dual equation (the first equation
of (8)) we can written as follows

12 _ 34 13 24 14 _ 123
Fy Fau " Fk;24 - Fgléik Fi Koa _ ng’za r (12)
F Fa'uk Fk &= _Fﬂlg,k" F FD’1-3k

for all k = (ky, k2, k3, ks), ki € Z. Using (10) Equations (12) can be rewritten in the following
difference form:

A A — A Ap + A - A2, — A A’Lk:

= A Ab = Ap A3+ A — AL - A3

adaak oagk 04 k o3tk T Aok
; ; 3 1
A Ay - Aka ¢ Ay 41-1k = 4 Ang =
4 2
_Akz a4k 5 Ak«l o2ak 024/\ 4‘ oak 1t _102415. 4‘62&’
44 ; 1 Al 44
Aodl = Ae Al AL A
1k qu 1o
3
e ‘Ak2“4023k ALS‘ gagk 2 A023k Dgak T 023.‘1 AO’Qk

3 ) 42 12 3
A}.,rw Ak3‘_]‘k + ‘1k 4._,. = 4k A‘-’Sk =
- Ak1‘4014k Akrl‘ 14k + 4 o14k Acn;k 0'141\. 4‘013&:

Ap, Ap — Ay, A2 + A2 ‘-14

4 2
- A -11'41': =
18 3
= _Akl Aﬂ'lak ¥ Aks o1k 4'013-’6 Aask <+ Acnak 401k
Ak3Ak Ade3 + 4.3 A4 = 44 A3
T4k -
1 2
= Akl ‘-"12’t Ak? A o2k + 4012k ‘—lcrzk 4012k _10'1’6

In the same way we obtain the difference anti-self-dual equation. From Equations (12) we
obtain at once

Ff = F; (13)
for all j < r, r=2,3,4, where ok = (cky, 0k, ks, oky).

Note that Equations (13) also are satisfied in the case of the difference anti-self-dual
equations.

PROPOSITION 1. Let F' be a solution of the discrete self-dual or anti-self dual equations.
Then we have

xxF=F. (14)

Proof. From (11) we have

24 23
* ok F = Zk( 034k*C12_F4k*513 + F2 ek +

14 13 12 k
+F, o nehy = ! ek, + F} Sk 5343)
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34 _Ti2k 24 _misk 23 .Tiak
- Ek (F 24]6634 + F %4*. 24 + FJE3K€23 +
14 723 13 724 12 ?‘34 i
F{T kE14 + F + F

Ulak“‘]S 0’121’5 12 -
= Z Friek;.
k i<jj=

Comparing the latter and (13) we obtain (14).
O

It should be noted that in the case of continual Yang-Mills theory for R with the usual
Euclidean metric Equation (14) is satisfied automatically for an arbitrary 2-form. But in the
formalism we use the operation (x)? is equivalent to a shift.

The difference analog of Equations (13) is given by

A Af — Akr“i‘ + Af - M Ai,,k =
- Akj.d‘q. - Ak‘l"Aﬂk + 4. _l Tjk - ."1;}‘ - 4‘?

“taork?

where o7k = (0ky...k;j...oky).
3. The discrete model in Minkowski space.

Let a base space of the bundle P be Minkowski space, i. e. R* with the metric g,, =
diag(— + ++). In Minkowski space we write Equations (8) as

*F = FiF, (15)
where i? = —1. Recall that F is g-valued, so therefore is *F. Then we must have ig = g
in obvious notation. However, this latter condition is not satisfied for the Lie algebras of
any compact Lie groups G. To study Equations (15) we must choose non-compact G such
as SL(n,C) or GL(n,C) say. This is a serious restriction since in physics the gauge groups
chosen are usually compact [5]. Let the gauge group be G = SL(2,C).

We suppose that a combinatorial model of Minkowski space has the same structure as
C(4). A gauge-invariant discrete model of the Yang-Mills equations in Minkowski space is
given in [7]. Now the dual complex K(4) is a complex of sl(2, C)-valued cochains (forms).
Because discrete analogs of the differential and the exterior multiplication are not depended
on a metric then they have the same form as in the case of Euclidean space. For more details
on this point see [7]. However, to define a discrete analog of the * operation we must take
into accounts the Lorentz metric structure on K (4). We denote by Z,, éx, k € Z the basis
elements of the 1-dimensional complex K which are corresponded to the time coordinate of
Minkowski space It is convenient to write the baSIS elements of K(4) = K K@ K ®K in
the form ji* ® s*, where ji* is either Z* or &* and s* is a basis element of K(3) = K@ K @ K,
k = (ki, ko, k3), k,k; € Z. Then we define the * operation on K(4) as follows

ﬂx ® Sk U *(ﬁn ® Sk) - Q(H_)éx ® ekl @e-‘m ® e"‘"S.I (16)

where Q(u) is equal to +1 if 7 = 7" and to —1 if i = &*. To arbitrary forms the * operation
is extended linearly. Using (16) we obtain

*F = Ek( 34;;512 F24k€13 Fo?f’akfﬁ (17)

14 13 2
— Bt skl 3k"24 F012k€34)-
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where F? € s1(2,C). Combining (17) with (9) the discrete self-dual equation *F
be written as follows

FO'3.-|.{ — ?Flz‘ _F24k = 3F13 FOZSk — EF
ka =g, Falsk B2, —F2, =4 F“1

for all k = (ky, ko, k3, ky), k. € Z, r =1,2,3,4. From the latter we obtain

3-1 12 2934 _ 134 i 13 __ _ 2p24 _ 124

aizk T Cflsk -

= 1F can

(18)

and similarly for any other components Fgr, j < r. So we have Relations (13). Thus a
solution of the discrete self-dual equations (18) satisfies Equations (13) as in the Euclidean

case.
We can also rewrite (18) in the difference form

A?l\'s‘ T4k A»‘54 aask sk 4034k 4; kT 4;341’: 4§3k -
= i{AAZ — A AL + AL - AZ, — AZ- AL ),
—Ak + A A «14 - A cA?2 =

g4 crqu krl azqk ozqk‘ a'4k o'g.;k o’gk
Ag, 452(33“ Ay “1K3k 3 Aa';allg ‘f?k ~ A% o AL =
= 1(Qk k. S
e — A3 AL,
_‘Akl Ai];k ® Akri 4; 1k Al::lrmk 44qk o 40’14k 4;1.‘? =
= z(Akr — Ag, -12 + AQ A3 L A3 473k),
A 431(3k Ak3 Flflrlgk -ZAo’lak cr43k Aa'lak Aclnk. =
= §(Ag, Ay — Ap,Ax + AZ. A
2 4 k- 1'4k)’

1 42 1
_Akl Lok + Ak‘7‘4012k 40’12* Aa'gk + Adlgk : Aalk

= i(Ap, A} — A, A2 + A3 - A* _ At A3,
73k 74

In similar manner we obtain the difference anti-self-dual equations. Obviously an anti-

self-dual solution satisfies Equations (13).

PROPOSITION 2. Let for any sl(2,C)-valued 2-form F Conditions (13) are satisfied. Then

we have
xx = —F.

Proof. If components of any discrete 2-form F satisfy (13), then F is a solution of the

discrete self-dual or anti-self-dual equations. Hence

x% F = %(FiF) = Fi* F = (F4i)?F = —F.
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REMARK. In the continual case the self-dual and anti-self-dual equations are written in the
form (15) because we have x x F = —F for an arbitrary 2-form F in Minkowsk:i space. In
the discrete model case it is easy to check that in K(4) we have

4
I
k

i<j j=2
Thus Equations (15) are satisfied only under Conditions (13).
THEOREM. If ezist some N = (Ny, Ny, N3, Ny}, N, € Z such that

F9=0 forany |k|>|N| (19)
then Equations (15) (or (8)) have only the trivial solution F' = 0.

Proof. Since for any solution of Equations (15) (or (8)) we have Relations (13) then the
assertion is obvious.

a
Let g be a discrete 0-form

9= ng&?k,
k

where zf is the 0-dimensional basis element of K (4) and g € SU(2) (or gx € SI(2,C)). The
boundary condition (19) in terms of the connection components can be represented as: there
is some discrete O-form g such that

Ai = _(‘Akjgk)gk_} for any |k| > |N|.

It follows from Theorem 3 [6].
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